
Journal of Sound and <ibration (2000) 234(3), 491}506
doi:10.1006/jsvi.1999.2879, available online at http://www.idealibrary.com on
COMPLEX MODE ACTIVE VIBRATION CONTROL OF
HIGH-SPEED FLEXIBLE LINKAGE MECHANISMS

SHAO CHANGJIAN AND ZHANG XIANMIN

Mechatronic Engineering Department, Shantou;niversity, Shantou 515063, People1s Republic of China

AND

SHEN YUNWEN

Mechanical Engineering Department, Northwestern Polytechnical ;niversity, Xi1an 710072, People1s
Republic of China

(Received 21 April 1999, and in ,nal form 29 December 1999)

A methodology for suppressing the elastodynamic response of high-speed #exible linkage
mechanisms with piezoelectric elements is developed. The "nite element active vibration
control model is given by a mixed variational approach with Hamilton's principle. On the
basis of complex mode theory, a hybrid independent modal controller is developed, which is
composed of state feedback and disturbance feedforward control laws. As an illustrative
example, the strategy is used to control the elastic vibration response of a four-bar linkage
mechanism. The simulation results show that the vibration is e$ciently suppressed.
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1. INTRODUCTION

For more than two decades, considerable attention has been paid to the investigation of the
dynamic analysis and vibration control of #exible mechanisms in order to achieve
high-speed and lightweight machines with accurate performances. Heretofore, there are
basically "ve design philosophies which have been developed to improve the elastodynamic
responses. The "rst involves designing links in the conventional materials with optimization
of the cross-sectional geometry of the members [1, 2]. The second one uses additional
damping materials to dissipate the vibration energy [3]. The third advocates that the
mechanism links should be built of advanced composite materials because of their high
damping and high sti!ness-to-weight ratio [4]. These three design concepts may be referred
to as passive vibration control. The fourth introduces a microprocessor-controlled actuator
into the original mechanism to reduce the de#ection of the #exible linkages [5, 6]. The last
involves the application of smart materials featuring distributed actuators and sensors to the
linkage mechanisms to control unwanted vibration. These two kinds of control may be
classi"ed as active vibration control. With recent advances in composite technology, smart
materials, such as optic "bers, piezoelectric ceramics and polymers, electro-rheological #uids,
and shape memory alloys, which can be bonded and embedded in composite laminates and
structures, come to play a signi"cant role in the active vibration control [7, 8].

A few attempts have been undertaken towards the application of smart materials to
control the elastodynamic vibration of lightweight mechanisms. Sung and Chen attempted
to control the elastodynamic response of a four-bar linkage mechanism consisting of rigid
crank and coupler links and a #exible follower link using piezoceramic elements as
0022-460X/00/280491#16 $35.00/0 ( 2000 Academic Press
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actuators and sensors [9]. The authors assumed that the free vibration modes of the #exible
follower link were the same as those of a simply supported beam. A theoretical development
and numerical simulation were given. Liao and Sung derived the "nite element equations of
the above mechanism and studied the active vibration control problem both analytically
and experimentally [10]. In the work of Choi et al., a slider-crank mechanism was
investigated, whose connecting rod was #exible and was bonded with two piezoelectric "lms
to its upper and lower surfaces [11]. On the basis of the independent modal control method,
Zhang et al. studied the active vibration control problem for the #exible mechanisms all of
whose members were considered as #exible [12]. Recently, Sannah and Smaili presented an
experimental investigation into a four-bar mechanism whose follower and coupler links are
#exible and the crank is rigid [13]. However, the state-space matrices of the system were
assumed to be constant for the entire motion cycle of the mechanism, which is not the case
when the mechanism operates at high speeds.

In this paper, a methodology for actively controlling the vibration response of high-speed
#exible linkage mechanisms with bonded piezoelectric elements is presented based on
complex mode theory. The "rst part of this paper presents a mathematical model for the
high-speed #exible linkage mechanisms equipped with bonded piezoelectric elements
employing a mixed variational approach with Hamilton's principle in conjunction with the
"nite element formulation. This model includes both the terms coupling the elastic and
rigid-body motions and the terms coupling the elastodynamics and piezoelectricity.
Secondly, an independent modal controller is developed based on the complex mode
theory, which is composed of state feedback and disturbances feedforward control. Finally,
a four-bar linkage mechanism with all #exible links is employed as an illustrative example
to demonstrate the capability of this proposed methodology. This paper ends with some
conclusions and perspectives.

2. MODELLING OF THE SYSTEM

2.1. ELEMENT EQUATIONS

The links in the mechanisms are modelled by connecting a series of beam elements.
Figure 1 shows a general beam element before and after deformation, as well as the di!erent
components of displacement of a point P in the element. This element is integrated with
some piezoelectric actuators and sensors, each of which is composed of two layers
symmetrically bonded to the upper and lower surfaces of the beam for the purpose of
Figure 1. Element displacement "eld.
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simpli"cation of formulation without loss of generality, and perfect bonding is assumed
between the connecting surfaces. Here, the Bernoulli beam hypothesis is adopted to describe
the displacement of all the components of element. (O}X}>) is the global "xed frame and
(o}x}y) is the local moving frame with o}x-axis coincident with the neutral line of the beam
element while its original point o is located at its one node before deformation. h is the angle
between these two frames.

Consider a general point P (x, y) in this element. Let P
0
be the correspondent point on the

neutral line, and P@, P@
0

are their respective positions after deformation. Then the elastic
deformation of P

0
is given by
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where u, v and u are the displacements in the x and y directions and the rotating angle,
respectively. The strains at point P@ can be easily determined from the above displacement
"eld:
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The stresses, however, cannot be expressed in a uniform equation because of the
piezoelectricity. In the beam, the stress is
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while in the actuators, according to the linear piezoelectricity [14], the stress is
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and in the sensors,
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where the E's and k's are the Young's modulus and the Poisson ratio of the beam, the
actuators and the sensors, respectively, Dv is the voltage between the electrodes of actuator,
h is the thickness, the e

31
's and d

31
are the stress/charge and strain/charge coe$cients, and

mT
33

is the free dielectric constant.
The element governing equation of electromechanical behavior can be derived by

a variational approach with Hamilton's principle. Hamilton's principle states that the
motion of an arbitrary mechanical system occurs in such a way that the de"nite time
integral of the Lagrangian becomes stationary for all the admissible con"gurations of the
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system when the initial (at time t
0
) and "nal (at time t

1
) con"gurations of the system are

known [15]. In mathematical terms, this is written as

DJ"D P
t
1

0

(¹!= ) dt"0, (5)

where ¹ and = are the total kinetic and total potential energies, and D represents the
variational operator. For the aforementioned element, ¹ is the sum of the kinetic energies of
the beam, the actuators, the sensors and the concentrated masses, all referred to the
(O}X}>) frame, i.e.,
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where < and o represent the volume and the mass density, the subscripts b, a, s and
c indicate the beam, the actuators, the sensors and the concentrated masses, respectively,
and ( 0 ) denotes the time di!erentiation. Furthermore,
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) are the co-ordinates of o in the frame (O}X}>), and c"cos h, s"sin h.

Substituting equations (1)}(2) and equation (7) into equation (6) and writing it in matrix
form, we have

¹
b
"1

2
o
b
A

b
¸
b
(XQ 2

0
#>Q 2

0
)#1

2
(o

b
I
b
¸
b
#1

3
o
b
A

b
¸3

b
)hQ 2#1

2
o
b
A

b
¸2
b
hQ (>Q

0
c!XQ

0
s)

#1
2
d0 T(M

1b
#M

2b
)d0 #1

2
hQ 2dT(M

1b
#M

2b
)d#hQ d0 Tb

b
d (8a)

!XQ
0
hQ dTB

1b
#>Q

0
hQ dTB

2b
#XQ

0
d0 TB

2b
#>Q

0
d0 TB

1b
#hQ 2d0 TD

1b
#hQ d0 T (D

2b
#D

3b
),

¹
r
"

n
r

+
k/1

1

2 P<k
r

ok
r
(XQ 2#>Q 2) d<

"

n
r

+
k/1

[1
2
ok
r
Ak

r
¸k
r
(XQ 2

0
#>Q 2

0
)#1

2
(ok

r
Ik
r
¸k
r
#1

3
ok
r
Ak

r
(xk3

2r
!xk3

1r
))hQ 2

#1
2
ok
r
Ik
r
(xk2

2r
!xk2

1r
)hQ (>Q

0
c!XQ

0
s)

#1
2
d0 T(Mk

1r
#Mk

2r
)d0 #1

2
hQ 2dT (Mk

1r
#Mk

2r
)d#h0 d0 Tbk

r
d

!XQ
0
hQ dTBk

1r
#>Q

0
hQ dT Bk

2r
#XQ

0
d0 TBk

2r
#>Q

0
d0 TBk

2r
#hQ 2dTDk

1r

#hQ d0 T(Dk
2r
#Dk

3r
)] (r"a or s), (8b)



ACTIVE VIBRATION CONTROL 495
¹
c
"1

2
(m

L
#m

R
) (XQ 2

0
#>Q 2

0
)#1

2
(I

L
#I

R
#m

R
¸2

b
)hQ 2#1

2
m

R
¸

b
hQ (>Q

0
c!XQ

0
s)

#1
2
d0 T(M

c
#M

1
)d0 #1

2
h0 2dTM

c
d#hQ d0 Tb

c
d

!XQ
0
hQ dTB

4
#>Q

0
hQ dTB

3
#XQ

0
d0 TB

3
#>Q

0
d0 TB

4
#hQ 2dTD

5
#hQ dTD

4
, (8c)

where d and d0 are the nodal displacement and velocity vectors,
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In equation (8), A, I and ¸ are the cross-section area, moment of inertia and length of the
components; n

a
and n

s
are the number of actuators and sensors bonded to the element,

m
L
, m

R
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and I
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are the concerned masses "xed to the left (¸) and right (R) ends of the

element and their moment of inertia, and the superscript (T) denotes the transpose of
matrix.

The potential energy of element is also the sum of those of the beam, the actuators and the
sensors, i.e.,

="=
b
#=

a
#=

s

"

1

2 P<
b

e
x
p
x
d<#

1

2

n
0

+
k/1

P<k
a
Aexpx

#

ea
31
hk
a

Dvk
a
!

mat
33

hk2

a

Dvk2

a Bd<#
1

2

n
s

+
k/1
P<k

s

e
x
p
x
d<. (9)

Substituting equations (1)}(4) into equation (9), through some transformation we get the
following matrix form:
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where ve
a
is the vector of input voltage to the actuators
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In equation (5), since the rigid-body equations of motion are of no consequence, the
variations of X

0
, >

0
and h are taken to be zero, so the corresponding terms are removed.

Generally, the rigid-body motion is assumed to be known previously. Therefore,
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Equation (11) is the Lagrangian equation of element. Incorporating equations (8) and (10)
into it yields the equation describing the motion of element being subjected to both
mechanical and electric loads and boundary conditions
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where M1 , C1 and K1 are the element mass, damping and sti!ness matrices, and P1 is the
element load vector. Their expressions are given in Appendix A. From equation (12), we can
get the static function equation of actuator

d
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The output voltage of a piezoelectric sensor is given as follows:
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are the surface area and capacitance of the sensor, and q (t) is the charge.

Considering equation (3), and having the output voltage vector of the element to be
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Therefore, equation (13) and (15) are the equations of motion of the element.

2.2. SYSTEM EQUATIONS

Equations (13) and (15) are in the local co-ordinate system. In order to derive the
equations of motion of the global mechanism, they must be transformed to the global
co-ordinate system. Let qe be the nodal displacement vector of an element in the global
co-ordinate system (O}X}>), and de"ne the transformation matrix
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Then the following equations hold:
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Selecting the vector consisting of all the nodal displacements referred to frame (O}X}>)
to be the generalized displacement vector q of the linkage system, the vector consisting of all
the input voltage of the actuators to be the generalized control vector v

a
, and the vector

consisting of all the output voltage of the sensors to be the generalized output vector v
s
, by

assembling all the element equations (17) and (18) with regard to the compatibility at the
nodes [16], the equations which describe the motion of #exible linkage mechanism system
and the behavior of piezoelectric apparatus are given as

MqK#Cq5 #Kq"P!D
a
v
a
, (19a)

v
s
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where M, C, K, D
a
and D

s
are the systematic mass, damping, sti!ness, control and output

matrices, respectively, and P is the systematic generalized force vector.
This model includes both the rigid-body and elastic motion coupling terms [17] and the

elastodynamics and piezoelectricity coupling terms, and takes into account the e!ects of the
piezoelectric apparatus upon the mass and the sti!ness of the system. Furthermore, it is
noted that all the system matrices are not constant but periodically varying functions of the
position of each link of the mechanism. However, once the rigid-body motion of system is
known, they can be calculated for any position. Therefore, the state-of-the-art method to
solve such a kind of periodically varying system is to separate the period of motion into
a large number of discrete subintervals in which the system matrices are assumed to be
constant. Then, the equations of motion can be solved using some convenient approaches
for the systems with constant coe$cient matrices.

3. COMPLEX MODE ACTIVE CONTROL OF THE SYSTEM VIBRATION

In the above mathematical model, C is not composed of the actual structural damping
terms but some terms related with the coupling of the elastic and rigid-body motions, and
C and K are not symmetric matrices, and so cannot be solved using the traditional real
mode method. In this section, we develop the method to decouple equation (19) on the basis
of complex mode theory. Then we give an independent modal control design approach,
which consists of the state feedback and disturbance feedforward control.

3.1. COMPLEX MODE THEORY

De"ne a state vector x:

x"Mq5 T, qTNT, x5 "MqK T, q5 TNT.

Rewriting equation (19) in terms of x we obtain
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For equation (20a), we have the generalized eigenvalue problem:

jAv#Bv"0, jATv@#BTv@"0.
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Here, because A and B are not symmetric, their eigenpairs are all complex instead of real.
These two equations yield the complex eigenvalues j

r
(r"1, 2,2 , 2N, where N is the

number of degrees of freedom of the system), the complex left eigenvectors v@
r

and the
complex right eigenvectors v

r
of the system, which satisfy the orthogonality conditions
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and the transformation
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Incorporating equation (23) into equation (20a) and considering the conditions of equations
(21) and (22), we have the decoupled system equation
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and z is called the modal co-ordinate vector. The output of the system is transformed to

v
s
"SXz"Hz. (25)

This kind of uncoupled system can be solved independently, so it is much more e$cient
than when equation (19) is solved directly. All the eigenpairs are seldom required to obtain
an accurate solution in practical application. Typically, only the "rst few modes of vibration
are excited within the operating range of the mechanisms. This makes the modal analysis
approach extremely suitable for "nding the dynamic response of systems with large
numbers of degrees of freedom. In the approach developed in this paper, the eigenvalues
and eigenvectors are all complex and occur in complex conjugate pairs, so it is called
complex mode approach.

3.2. CONTROL DESIGN

Several control synthesis methodologies have been developed in the past years, such as
classic PID control, the LQR and LQG techniques robust H

=
control, etc. [18, 19].

However, their validity in the active control of #exible mechanism vibration needs further
investigation. In this study, we develop a simple independent modal space controller, which
is composed of an active damper and a feedforward compensator. In this study, all the state
variables are supposed to be measurable.

Since it is neither practical nor necessary to control all the vibrational modes of the
system with a large number of degrees of freedom because the higher modes do not
contribute very much to the solution and therefore need not be taken into account, only the
reduced dynamics with the "rst N

c
modes is controlled. The residual dynamics is ensured to

be stable by the assumed modal damping. Therefore, the system equation in modal
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co-ordinates, equation (24), may be divided into two modal spaces, i.e., the controlled and
uncontrolled modal spaces
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v
a
"Fz

c
#v

2
, (27)

where the "rst term, Fz
c
, employs the state feedback law to allocate the poles of the system

to provide su$cient damping for the controlled modes and v
2

uses the input feedforward
law to counteract the generalized force vector w

c
, i.e.,

z5
c
"(K

c
#P

c
F )z

c
#(P

c
v
2
#w

c
), z5

r
"P

r
Fz

c
#K

r
z
r
#P

r
v
2
#w

r
. (28)

Thus, we set
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This equation yields the state feedback gain matrix F. Furthermore, we set
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is the reference input. Then v
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and f
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can be optimized with respect to the ability of the actuators and the design

requirement.

4. SIMULATION EXAMPLE

In order to demonstrate the validity of the proposed control methodology, a computer
simulative analysis is carried out on the four-bar linkage mechanism shown in Figure 2. The
property parameters of the mechanism are tabulated in Table 1. There is a concentrated
mass 0)2 kg at the joints A and B respectively. A pair of actuators and a pair of sensors are
bonded on each of the links. The actuators are manufactured from PZT piezoelectric
ceramic with thickness of 0)5 mm, and the sensors from PVDF piezoelectric polymer with
thickness of 0)2 mm. The actuator and sensor on the crank link are 30 mm long and 30 mm
wide and are located at a quarter and three quarters length of the link while those on the
coupler and the follower are 40 mm long and 25 mm wide, and at their three-eighths and
"ve-eighths length. The material properties of the system are given in Table 2.

In this study, all the links are treated as #exible ones. The crank is modelled by two "nite
elements, and the coupler and follower are both modelled by four elements, so the system
has 30 degrees of freedom. The crank speed is 398 r.p.m. The "rst 5 modes are retained to
calculate the response of the system while the "rst 3 modes are taken as controlled modes,



Figure 2. Four-bar mechanism with piezoelectric apparatus. Sensor. Actuator.

TABLE 1

Parameters of the mechanism links

Parameters Link 1 Link 2 Link 3 Link 4

Length (mm) 98)8 302)0 300)0 332)2
Width (mm) 30 25 25 *

Thickness (mm) 5 3 3 *

TABLE 2

¹he material properties

Properties Links Actuators Sensors

Density o (kg/m3) 2700 7500 1760
Young's modulus E (N/m2) 7]1010 1)17]1011 0)15]1010

The Poisson ratio k 0)25 0)25 0)25
Dielectric constant mT

33
* 1700 12

(]8)85]10~12 F/m)
Piezoelectric constant d

31
(m/V) * 185)0]10~12 20)0]10~12
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i.e., N
c
"6 and N

r
"4. In the control synthesis, the controlled modal damping ratios are

increased from 0)01 to 0)03, and the reference input is set to be 30% of the generalized modal
force.

Figure 3 shows the X and > direction elastodynamic responses of the midpoint of the
coupler link both with and without control. It is seen that a signi"cant vibration
suppression is achieved: the responses come to be steady much faster and the steady state
responses are remarkably suppressed after employing the control.

In Figure 4, are the plots of the actuator control voltages. It is observed that, at the
beginning of the control action, high-voltage magnitudes are required to provide su$cient
active damping and the voltages vary violently. When the system comes to be steady, the
input voltages exhibit a regular periodicity and their magnitudes are much less, which are
mainly composed of the feedforward components. This indicates that a much more



Figure 3. Comparison of the responses with and without control. (a) Response in the X direction. (b) Response
in the > direction. () ) ) )) Uncontrolled; (*) Controlled.

Figure 4. Input voltages of the actuators. (*) Coupler; () ) ) ) )) Follower.
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expensive facility is needed to achieve the e$cient active damping for the linkage
mechanisms.

A balance between the vibration control level and the control input must be achieved
because the practical actuators can only endure limited voltage. The tolerant voltage of the
PZT actuator used in this paper is from !500 to #500 V, so the control voltage must not
exceed this range. Otherwise, the actuator will lose its piezoelectricity and fail to work at all.
The results shown in Figures 3 and 4 satisfy such constraints.

During the process of the study, the e$ciency of the controller is found to be very
sensitive to the variation of the position, con"guration and dimension of the actuators and
sensors, and the above is the result after some trial-and-error work. We will present the
optimization of the actuators and sensors in some subsequent works.

In this paper, the controller is designed to solely improve the dynamic characteristics of
the controlled subsystem. When the closed-loop controlled system equation (28) is set-up,
however, the e!ect of the control input upon the residual subsystem cannot be neglected.
The e!ect may deteriorate the control e$ciency regarding the whole system because it
probably excites violent vibrations of the residual modes if the control is not inputted
properly. This is called &&spillover''. How to overcome this phenomenon is the aim of our
further research.
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5. CONCLUSIONS

An elastodynamic analysis and control of the high-speed #exible linkage mechanisms
incorporated with piezoelectric actuators and sensors has been investigated. A mixed
variatioal approach with Hamilton's principle has been developed to derive the "nite
element equations that describe the motion of the mechanisms and the behavior of the
piezoelectric apparatus. This model includes both the rigid-body and elastic motion
coupling terms and the elastodynamics and piezoelectricity coupling terms as well
as the e!ects of the actuators and sensors upon the mass and sti!ness of the system. An
independent modal space control methodology based on the complex mode theory has
been proposed. The computer simulation carried out upon a four-bar planar linkage
mechanism shows that the vibration is signi"cantly suppressed.

This study demonstrates clearly the validity of the proposed methodology. More
researches should be undertaken toward the synthesis of a more e$cient controller using
some advanced control laws and the optimization of the actuators and sensors. The
experimental implementation of the complicated controller also needs further investigation.
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